Exam I Solutions, MA1025, Winter 2004

1. Suppose we are shown four cards that are lying on a table. We know that one side of each card is labeled either A, B, or C, and that the other side of each card is labeled either !, \star , or Δ . The cards appear as follows:

We are told that if any card bears an B or a C on one side then it must bear a \star or a Δ on the other side. Precisely which cards need to be turned over to either verify or refute this claim? Explain.

Solution: The card showing a ! must be turned. If it has either a B or a C on the reverse, the claim is false. The cards bearing A and \star are of no interest. The card bearing a C must be turned; if the other side shows neither \star nor Δ , the claim is false. If neither of the two conditions described as falsifying the claim occur, the claim is true.

- 2. Assume that the universal set is the set **R**. Decide whether each of the following is true or false, and in each case briefly explain your reasoning.
 - (a) $\forall y \exists ! x(x = |y|)$ is true, since the absolute value function is well defined for all reals.
 - (b) $\exists !x \forall y (x = |y|)$ is false, since it asserts that there is some "magic" x that is simultaneously the absolute value of every real number. This indirectly asserts that either there are only two real numbers or that there is only one.
 - (c) $\forall x \exists ! y(x = |y|)$ is false. If x < 0, then x = |y| is false for all reals, while if x > 0 then x = |y| is true for two reals, namely y and -y.
 - (d) $\forall x(x \ge 0 \Rightarrow \exists y(x=|y|))$ is true. If $x \ge 0$, then x=|x| and x=|-x|.
- 3. This problem concerns set notation.
 - (a) Describe each set using the form $\{f(x)|P(x)\}$:

i.
$$A = \{1, 3, 9, 27, ...\} = \{3^{n-1} | n \in \mathbf{N}\}$$

ii.
$$B = \{1, 1/4, 1/9, 1/16, ...\} = \{1/n^2 | n \in \mathbf{n}\}\$$

(b) Describe each set as a list of elements between braces:

i.
$$\{x \in \mathbf{Z} | -8 \le x^3 \le 8\} = \{-2, -1, 0, 1, 2\}$$

ii.
$$\{x \in \mathbf{N} | (\exists y \in \mathbf{N})(x^2 + y^2 \le 20)\} = \{1, 2, 3, 4\}$$

- 4. Let $A = \{1, 2, 3\}, B = \{1, \{2, 3\}\},$ and $C = \{1, 2, 3, \{1, 2, 3\}\}.$ Find the following:
 - (a) $A \cup C = C$
 - (b) $A \cap B = \{1\}$
 - (c) $B \cup C = \{1, 2, 3, \{2, 3\}, \{1, 2, 3\}\}\$
 - (d) $B \cap C = \{1\}$
 - (e) $B C = \{\{2, 3\}\}$
 - (f) $A B = \{2, 3\}$